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Abstract

We explore modifications to a stylized game-theoretic model of academic research, proposed
by Kleinberg and Oren [9]. Our primary contribution is a utility penalty term that reflects
researchers’ aversion to the risk of being scooped; surprisingly, this “scoop penalty” improves
social welfare. Theoretically, we prove that for identical researchers and pure Nash equilibria, the
penalty improves the price of anarchy in worst-case instances from 2 to below 1.5. Empirically,
we demonstrate this penalty also significantly improves social welfare for randomly sampled
problem instances, when policies are learned via no-regret dynamics, even for non-identical
researchers. In addition, we formulate and experiment with the following model modifications:
credit replication, risk constraint and a reward-variance penalty.

1 Introduction

1.1 Problem description

The ideal academic research project is (a) important if successful, (b) likely to succeed and (c)
unlikely to get scooped. These three desiderata are necessarily conflicting—e.g. a project that
excels in (a) and (b) will inevitably attract competition and do poorly in (c)—and researchers face
difficult strategic decisions when choosing what to work on. Do researchers acting selfishly optimize
the social welfare of academic pursuits? To explore this, we consider a basic game-theoretic model
and examine the resulting behavior.

1.2 Prior work

The problem of resource allocation for the production of knowledge has been studied in the context
of game theory since at least the 1970s, when Kenneth Arrow published his economic model of
invention [5]. Since then, much work has been done on modeling incentives in choosing research
projects. In the literature, many works focus on the collaborative aspect of research and its game-
theoretic modeling [10, 7, 3, 2, 1]. Others use graph-theoretic analysis of academic research to inform
research selection strategies [14, 8]. The starting point of our project is the following simplified
model put forth by Kleinberg and Oren [9].

1.3 Model: the Project Game

Consider a community of n researchers, each choosing to work on a single project from a set of m
different projects. Each project j has importance wj , which should be thought of as the project’s
contribution to society, if successful. A researcher i working on project j succeeds with probability
pi,j , independently of any other researcher working on this project. For any allocation x : [n]→ [m]
of researchers to projects, the social welfare is the expected importance of the successful projects,

W (x) =

m∑
j=1

wjP(some researcher succeeds on j) =

m∑
j=1

wj

(
1−

∏
i∈Xj

(1− pi,j)
)
,
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where here and in the sequel Xj denotes the set of researchers allocated to project j.
In the model, the incentive for researchers to succeed on projects is credit, which is distributed

according to a simple rule: if project j is successful, wj credit is divided evenly among the researchers
that succeeded in the project. Specifically each successful researcher to succeed in project j receives
wj/Kj credit, where Kj is the number of researchers who succeeded in project j. A researcher’s
utility is the expected amount of credit she receives:

ui(x) = E[credit for project xi] = wxipi,xiE
[

1

1 +Kj(x\i)

]
, (1)

where Kj(x\i) is the (random) number of researchers other than i that are successful on project j
under allocation a. We refer to this credit-splitting rule as equal split, and note that it is a special
case of the Shapley utility [11].

Nash equilibria (NE) in the game defined by this utility function do not always maximize the
social welfare, and a maximizing allocation is in general NP-hard to compute, as shown by [9].
However, they also show that the price of anarchy in this game is at most 2, and provide somewhat
sharper bounds when pi,j is the same for every i. The primary focus of their paper is modifications
of the credit allocation rule that make NE socially optimal, whose computation require centralized
processing. In our project we instead propose completely decentralized modifications to the utility
function, intended to make it more realistic.

1.4 Our contributions and paper outline

In Section 2 we introduce the “scoop penalty”: a penalty term added to the utility, which is moti-
vated by the observation that researchers suffer professional and emotional costs—not captured by
the basic model—when somebody else succeeds at the project they were working on. In Section 2.1,
we analyze this penalty in the simpler case of researchers with identical success probability for any
given project. We show that, with a simple choice of parameters, the scoop penalty guarantees
price of anarchy smaller than 1.5, for any number of researchers, w.r.t. pure Nash equilibria. In
contrast, without the penalty, there exist instances with n identical researchers and a pure Nash
equilibrium that is suboptimal by a factor of 2 − 1

n [9]. We consider the case of non-identical
researcher in Section 2.2, and provide robust price of anarchy bounds for the scoop penalty. Here,
we could not prove beneficial effect of the penalty, but we can show that, with the parameters
determined in Section 2.1, the robust PoA with different players is at most 2.5. Is Section 2.3, we
provide additional interpretation and discussion of the scoop penalty.

In Section 3, we propose some additional model modification, motivated by a desire for greater
realism: different credit splitting rules (Section 3.1) and failure aversion penalties (Section 3.2),
based either on per-researchers risk tolerance threshold, or variance-based utility penalty terms.
Unlike the scoop penalty, we show that each of these modifications can bring about catastrophically
bad social welfare. We discuss the implications of these conclusion in Section 3.3.

Finally, in Section 4 we report on our empirical study. The study consists of generating random
game instances with n = 50 researchers working on m = 100 projects, and solving them using
the different utility functions proposed and three different no-regret learning algorithms. We first
describe our experimental protocol, including instance generation and optimization methods (Sec-
tions 4.1–4.4). Next, we present and discuss our experimental findings (Section 4.5). The most
notable finding is that, for identical researchers, the scoop penalty improves the ensemble-averaged
suboptimality by over 10%, achieving nearly optimal allocations, and, for different researchers, the
scoop penalty also provides significantly better results.

2



2 The Scoop Penalty

Let ui (x) denote some base utility function, representing the utility of researcher i from strategy
x. We propose to augment the base utility function with a “scoop penalty”: a punishment player i
receives when another player succeed in her chosen project. The penalty aims to reflect repercus-
sions of being scooped that are otherwise unaccounted for in the model, e.g. loss of partial research
progress, and the emotional toll of efforts gone to waste.

Such penalty should be proportional to the probability that another player succeeds in the
project. It also makes sense to make the penalty proportional to the the importance of the project,
since the pain of getting scooped certainly increases the more the scooped result is celebrated.
Moreover, making the penalty proportional to the project importance ensures that the penalty and
the base utility function have matching scales. Thus, if strategy x has player i choose project j
(i.e. xi = j), we would like to penalize her by a quantity proportional to

wjP (another succeeds in j) = social welfare from project j with i removed := Wj

(
x\i
)
.

The proposed modified utility is therefore

ũi (x) = ui (x)− ρi,xiWxi

(
x\i
)

(2)

where the constants ρi,j represent how much player i is averse to getting scooped on project j.
One natural setting is ρi,j = ρ (1− pi,j), which gives the penalty the interpretation “in the event
that player i fails at project j and someone succeeds in the project, he pays a fine ρwj” (and no
fine otherwise). For general ρi,j , the penalty can be interpreted as “in the event player i chooses
project j and anyone else succeeds, he pays a fine ρi,jwj” (regardless of whether player i succeeded
as well). Under this interpretation the penalty is perhaps more accurately described as an “envy”
penalty.

2.1 Guarantees for identical players

We begin with the special case where all the players are identical; pi,j = pj and ρi,j = ρj for
every i, j; we refer to this case as the Project Game with Identical Players. For a strategy vector
x = [x1, . . . xm] we denote the number of players assigned to every project by the corresponding
upper case letter X = [X1, . . . , Xm], i.e. Xj = |{i | xi = j}|. The social welfare from project j when
strategy x is used is given by

Wj (x) = wj

(
1− (1− pj)Xj

)
:= Wj [Xj ] .

The base utility under consideration will be the equal split utility (1), which in this case reduces to
splitting the expected social welfare evenly between all participants: ui (x) = Wxi [Xxi ] /Xxi . The
scoop-penalized utility takes the form

ũi (x) =
Wj [Xj ]

Xj
− ρjWj [Xj − 1] := Ũj [Xj ] where j = xi. (3)

Note that the utility is decreasing with Xj ; therefore this is a congestion game and hence a potential
game [12] and has a pure Nash equilibrium. Our first result is a bound on the social welfare of pure
Nash equilibria, whose proof follows closely that of [11, Theorem 2].
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Theorem 1. Let x, y be two strategies for the Project Game with Identical Players. If x is a Nash
equilibrium for utility (3), then

W (x) ≥ W (y)

1 + γ (x, y)
,

where

γ (x, y) := max
j∈[m]

{
max

{
W [Yj ]

W [Xj ]
− Yj
Xj
− ρj (Xj − Yj)

W [Xj − 1]

W [Xj ]
, ρj (Yj −Xj)

}}
. (4)

We prove Theorem 1 in appendix A.1.
To obtain a price of anarchy bound for the class of pure Nash equilibria, we simply optimize

γ (x, y) over x and y. For compactness we introduce the standard notation a ∨ b := max {a, b} and
a ∧ b := min {a, b}.
Corollary 2. In the Project Game with Identical Players and utility (3), suppose allocation y
satisfies Yj ≤ n̄ for every j. Any pure Nash equilibrium has utility a least

W (y)

1 + maxj∈[m] γj (n̄)
where γj (n̄) := max

a,b s.t.
2≤b≤ 1

ρj
∧n

1≤a≤(b−1)∧n̄

{
Wj [a]

Wj [b]
− a

b
− ρj (b− a)

Wj [b− 1]

Wj [b]

}
∨ ρjn̄. (5)

Consequently, if an optimal allocation y? satisfies Y ?
j ≤ n̄ for every j, the price of anarchy is at

most 1 + maxj∈[m] γj (n̄).

Proof. To derive the bound we simply maximize γ (x, y) in (4) subject to Yj ≤ n̄ for any j . The
only piece that requires explanation is the upper bound b ≤ 1

ρj
in the definition of γj (n̄). To see

why we may limit b so, fix some j and suppose b ≥ 1
ρj

. We have

Wj [a]

Wj [b]
− a

b
− ρj (b− a)

Wj [b− 1]

Wj [b]
≤ Wj [a]

Wj [b]
− a

b
−
(

1− a

b

)Wj [b− 1]

Wj [b]
≤ Wj [a]−Wj [b− 1]

Wj [b]
≤ 0,

where the last inequality is due to a ≤ b − 1. Therefore there is no point in considering b ≥ 1/ρj .
This is not surprising, given that the penalized utility Ũj [k] is negative for k ≥ 1 + 1

ρj
; the scoop

penalty in effects implements a hard cutoff on the number of participants in any project.

Corollary 2 tells us that the only downside of of having ρ 6= 0 comes from the term ρn̄, that
depends on the a-priori bound n̄; if we only know that n̄ ≤ n, it would seem that we must set ρ ≤ 1/n
to achieve any meaningful PoA guarantee. However, observe that in order to get a 1 − ε fraction
of the maximum utility available from project j, it is enough to assign roughly log ε/ log (1− pj)
players to that project. Thus, we can get very close to the optimal allocation with only a few
players assigned to each project, effectively creating our own n̄. The only projects that may require
many players are those with low success probability pj . However, for a project j with pj � 1 the

social welfare Wj is close to linear, and
Wj [a]
Wj [b]

− a
b − ρj (b− a)

Wj [b−1]
Wj [b]

will be small even for small

values of ρ. We formalize these observation in the following

Corollary 3. In the Project Game with Identical Players with utility (3), the price of anarchy
w.r.t. pure equilibria is at most

inf
ε∈(0,1)

1

1− ε ·
[
1 + max

j∈[m]
γj

(⌈
log ε

log (1− pj)

⌉)]
(6)

with γj (·) defined in (5).
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Figure 1: Evaluation of PoA for different success probability p and different values of ρ. For ρ 6= 0
we use bound (6) with ε fixed at 0.01, and for ρ = 0 we use the bound (5) with n̄ = n.

Proof. Let y? be an optimal allocation, and consider the allocation y which assigns

Yj = min
{
k ≥ 0 |Wj [k] ≥ (1− ε)Wj

[
Y ?
j

]}
players to project j. Note that this allocation is always feasible since Yj ≤ Y ?

j for every j, and that
by construction W (y) ≥ (1− ε)W (y?). Moreover, by construction we also have

Wj [Yj − 1] < (1− ε)Wj

[
Y ?
j

]
≤ (1− ε)wj .

Using Wj [k] = wj

(
1− (1− pj)k

)
we deduce that

1− (1− pj)Yj−1 < 1− ε⇒ Yj − 1 <
log ε

log (1− pj)
⇒ Yj ≤

⌈
log ε

log (1− pj)

⌉
.

Applying Corollary 2 on policy y and using W (y) ≥ (1− ε)W (y?) completes the proof.

In Figure 1 we illustrate Corollary 3 by explicitly evaluating (6) for ε = 0.01. For pj ∈ (0, 1),
we show the bound obtained when optimizing over ρj , as well as when using

ρj = c · log
1

ε ∨ (1− pj)
, (7)

for c ∈ {0.02, 0.05, 0.08}. For comparison, we show the PoA bounds when ρ = 0 and n ∈ {100, 1000}
(the bound (6) holds for any value of n). As can be seen in the figure, the optimal value of ρj
guarantees PoA below 1.4 for any value of p. Moreover, for a fairly wide range of parameters c, the
heuristic (7) provides similar PoA bounds for any n and p. In contrast, with ρ = 0 the PoA bounds
(which are tight in the worst case) depend significantly on p and n. We discuss the heuristic (7) in
the end of the next section, where we generalize it to multiple players.

Unfortunately, our PoA guarantees for identical players do not extend beyond pure Nash equi-
libria, because of the permutation step in the beginning of the proof of Theorem 1. We can
possibly address this issue using the more sophisticated techniques in [11], which produce robust
PoA bounds that are also valid when every player can choose only a subset of the projects (but
success probability for available projects are identical for all players).
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2.2 General guarantees

We now consider the general setting, where pi,j and ρi,j may depend on both i and j. Here we let
ui(x) be any valid utility [15], satisfying

∑
i ui(x) ≤W (x) and ui(x) ≥W (x)−W (x\i); the “equal

split” (Shapley) utility is valid. In this level of generality, we were not able to prove that the price
of anarchy decreases. However, we argue that the (natural generalization of) the choice of ρ that
provided a PoA bound of 1.5 for identical players, will have robust PoA at most 2.5 in the general
case. Without the scoop penalty the PoA is 2 in the worst case even for identical players.

First, we prove a smoothness-type result, which is a fairly trivial extension of the proof of
smoothness for general valid utility games. In what follows we let x, y denote assignment vectors,
and X,Y denote their respective set-valued inverses, i.e. Xj = {i | xi = j} and similarly for Yj .

Theorem 4. In the Project Game with penalized utility (2) and valid base utility ui, any two
allocations x, y satisfy∑

i∈[n]

ũi(yi, x\i) ≥W (y)− (1 + β(y))W (x) where β(y) := max
j∈[m]

∑
i∈Yj

ρi,j . (8)

Therefore, if W ? = W (y?) is the maximal social welfare, the robust price of anarchy is at most

min
y

{
(2 + β(y))

W ?

W (y)

}
≤ 2 + β(y?).

Proof. By definition of the scoop penalty, we have∑
i∈[n]

ũi(yi, x\i) =
∑
i∈[n]

ui(yi, x\i)−
∑
i∈[n]

ρi,yiWyi(x\i).

The well-known analysis of valid utility games (cf. [13]) gives∑
i∈[n]

ui(yi, x\i) ≥W (y)−W (x).

Moreover,∑
i∈[n]

ρi,yiWyi(x\i) =
∑
j∈[m]

∑
i∈Yj

ρi,jWj(x\i) ≤
∑
j∈[m]

∑
i∈Yj

ρi,jWj(x) ≤
∑
j∈[m]

β(y)Wj(x) = β(y)W (x),

establishing the smoothness bound. Noting that ũi(x) ≤ ui(x) for every i and x, we conclude that
any coarse correlated Nash equilibrium has expected welfare at least W (y)/(1 + β(y)). Since this
holds for every y, we have our claimed bound on the robust price of anarchy, where the final bound
follows from taking y = y?.

Unlike Theorem 1 for identical players, the bound of Theorem 4 strictly deteriorates as ρi,j increase.
However, one should note that this bound is quite loose; in the final step of the proof we replace
ũi(x) by the larger ui(x), thereby throwing away any beneficial effect that the scoop penalty could
possibly have. In fact, the smoothness bound (8) implies the stronger result

(2 + β(y))W (x) ≥W (y) +
∑
j

∑
i∈Xj

ρi,jWj(x\i)

holds in expectation for every distribution on x corresponding to a coarse correlated Nash equilib-
rium. Unfortunately, it is not clear how to relate the beneficial terms of the form ρi,jWj(x\i) to
either W (x) or W (y) in a way that improves the PoA bound.

6



The quantity β(y) in Theorem 4 roughly corresponds to the term ρjYj appearing in Theorem 1
for identical players. Similarly to the case of identical players, we are able to control the value of
β(y) by arguing that (1− ε)-optimal allocations need to succeed with probability at most 1− ε in
any given project. We express this formally in the following (see Appendix A.2 for a proof)

Corollary 5. In the Project Game with penalized utility (2) and valid base utility ui, if

ρi,j = c · log
1

max{ε, 1− pi,j}
(9)

for some c, ε ∈ (0, 1), then the robust price of anarchy is at most

2 + c · log 1
ε

1−√ε .

For c = 0.05 and ε = 0.01 (as in Figure 1), the robust price of anarchy is at most 2.4781 ≤ 2.5.

2.3 Discussion

As long as ρi,j is set roughly according to (9), the scoop penalty should never catastrophically affect
the resulting equilibrium, and may potentially improve it. Ignoring the ε cutoff, the scoop penalty
with (9) corresponds to the following “story”. If a researcher i tries to work on project j and
someone else succeeds, he looks at the resulting paper and estimates his chance pi,j of succeeding
in the project. He then deducts from his happiness balance the quantity wj/n̄i,j , where n̄i,j is the
number of times researcher i would have needed to choose project j in order to succeed with the
overwhelming probability 1 − e−1/c (> 0.99999999 for c = 0.05). Thus, the likelier the success in
the scooped project, the worse the penalty gets. In our opinion, this “story” is fairly consistent
with how researchers respond to results that overlap closely with their current work.

The formula (9) is quite attractive for introducing as a designed utility function (say, for robotic
researchers), since ρi,j depends on the problem instance only through pi,j , which can be estimated
locally. Moreover, just like in the “story” above, when agents develop their policy by repeated
gameplay, the probability pi,j needs to be estimated only whenever another agent succeeded in the
task, which might make forming an estimate even easier. For example, once a researcher sees a
proof of the theorem she was working on, it is easier for her to tell how close she was.

3 Additional Model Modifications

3.1 Credit-splitting schemes

Recall that the “equal split” utility for the Project Game can be defined as the expected credit
received under the following simple rule: for project j, wj credit is divided evenly among all the
researchers who succeed in this project. While this utility is conceptually simple and guarantees
reasonably good social outcomes in the form of price of anarchy bounds, it is not necessarily realistic
as a model for how academic credit is assigned.

In our experience, if two research groups publish very close results within a short period of
time from one another, they do not derive half the benefit each would have received had the other
group not published their work. For example, papers citing one paper are likely to cite the other as
well, and the overall number of citing works should not decrease due to the independent discovery;
it might increase! We believe that other proxies of academic credit, such as awards, promotion
decision, and media exposure, are also not cut in half due to independent discovery.
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For assignment x, let Kj(x) denote a random variable that represents the number of researchers
that succeed in project j. The equal split (Shapley) utility of player i from assignment x is

ui(x) = wjpi,j · E
[

1

1 +Kj(x\i)

]
for j = xi.

To address the fact that credit is not split evenly, we may consider more general utility functions,
of the form

ui(x) = wjpi,j · Ef(1 +Kj(x\i)) for j = xi, (10)

where f : N→ R+ is a non-increasing function, with the even split corresponds to f(k) = 1/k. By
considering different functions f we can model different mechanism for dividing the credit among
successful parties.

Perhaps the simplest possibility is that wj credit is replicated among every successful researcher;
f(k) = 1 for every k; we call this credit replication. The resulting utility ui(x) = wxipi,xi is
independent of x\i and therefore there is no longer any interaction in the Project Game: the only
possible equilibrium is one where every researcher i greedily picks the project j maximizing wjpi,j .
Clearly, this can result in outcomes that are very bad from a social welfare perspective. Consider
for example the extreme case where n = m, pi,j = 1 for every i, j, wj = 1 for every j ≥ 2 and
w1 = 1 + δ for some δ � 1. Under the modified utility with f(k) = 1, in any Nash equilibrium all
players choose project j = 1, and the social welfare is 1 + δ. In contrast, the optimal social welfare
n+ δ (each player working on a different project). Thus, under this utility the price of anarchy is
effectively unbounded.

Arguably, a utility function with f(k) = 1 is unrealistic, as there is some degree of loss incurred
by researchers in the event of independent discovery. We may consider instead a function of the
form f(1) = 1 and f(k) = β for k > 1 and some constant β < 1, e.g. β = 0.9. Intuitively, a
function f of this form seems realistic, as collision among 3 or more groups are extremely unlikely
in practice and therefore values of f for k > 2 seem unimportant. However, a closer look reveals
that such f suffers from just the same issues as f(k) = 1; if in the previous example we change w1 to
1/β+δ we will still have that in equilibrium all researchers work on project j = 1, while the socially
optimal assignment sets each researchers to a different project, and the equilibrium is suboptimal
by a factor of roughly βn. This example reveals the flaw in the above intuition justifying this form
of f ; massive multi-party collisions must are probably rare in practice because there exist a strong
incentive against them.

3.2 Risk-aversion penalties

Models of the form (10) assume that researchers only seek to maximize the expectation of the
utility awarded to them. However, in reality many researchers seek to guarantee at least some
success, and would prefer projects with smaller expected reward, if they have a substantially larger
probability of success.

Here we propose two models for such risk aversion. In the first model, every researcher i has
a risk threshold p

i
, and they will only choose projects with probability of success pi,j ≥ p

i
. To

formalize this, given a base utility function ui(x) we may define the penalized utility function

ũi(x) = ui(x) · 1{pi,j≥pi} =

{
ui(x) pi,j ≥ pi
0 otherwise

where j = xi.

A second model for risk aversion can be derived by means of a variance penalty, where we
subtract from the utility a factor proportional to the deviation of the reward, ignoring the other
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players. This standard deviation equals wj
√

(1− pi,j)pi,j , and the modified utility has the form

ũi(x) = ui(x)− αiwj
√

(1− pi,j)pi,j = ui(x)− (1− pi,j)αiwj
√

pi,j
1− pi,j

where j = xi.

where ai is a player-dependent risk aversion coefficient. The variance penalty admits the following
probabilistic interpretation: if researcher i succeeds in her chosen project j, she obtains a reward

specified by the base utility function ui, and if she fails she pays an additional fine αiwj
√

pi,j
1−pi,j .

Note that the variance penalty implies a risk-threshold as well: since all the utilities we consider
are at most wjpi,j , the penalized utility will be negative whenever

wjpi,j − αiwj
√

(1− pi,j)pi,j < 0⇔ pi,j <
1

1 + α2
i

,

and will therefore not be chosen.
Both the risk threshold and variance penalty modifications share a clear failure mode, when the

most profitable projects from a social welfare perspective have probability of success that is too
low. Consider for example the extreme case where w1 = 1 and wj = δ � 1 for every j > 1, but
pi,1 < p

i
(or pi,1 < (1 + α2

i )
−1) for every i ∈ [n]. In this case, in equilibrium no one will work on

project j = 1, even though the socially optimal assignment has everyone working on project j = 1
when δ is sufficiently small.

3.3 Discussion

All the model modifications proposed in this section suffer from catastrophic failure in some problem
instances. This raises two questions: (1) Are such catastrophic failures realistic? (2) If not, does
this mean that the proposed modeling modifications are unrealistic?

Regarding the first question, we can say with confidence that the failure mode of Section 3.1
does not occur in reality, as otherwise events where multiple people succeed in the same project
would be far more commonplace, and there would be far less diversity in the projects researchers
choose to work on. Whether the failure mode of Section 3.2 occur in reality is a more difficult
question. Clearly, in practice unsuccessful research projects are quite common, indicating the
willingness of researchers to take some risk. However, the probability of success in the research
community appears to generally be quite high, with a fair fraction of research inquiries resulting in
publications. It is not difficult to imagine that some very risky, very rewarding research projects
are not sufficiently attended to, from a social welfare perspective. The relatively small number of
theoretical computer scientists directly thinking about P=NP is perhaps an example of such an
issue.

Regarding the second question, we remark that worst-case bad behavior does not necessarily
imply one in practice. A more refined analysis of the effects of the modifications proposed in
the previous section will involve coming up with a probabilistic model for problem instances (i.e.
distribution over {wj , pi,j}) as well as penalty parameters ({p

i
} or {αi}), and seeing how equilib-

ria compare to socially optimal allocation statistically (e.g. in expectation). For example, if the
distribution is such that argmaxj{wjpi,j} turn out to be different for different i—so people have
different favorite projects—one could imagine that a scheme where credit is replicated instead of
split still provides decent social welfare. Similarly, if the risk-aversion constants {p

i
} or {αi} vary

significantly among researchers, one could hope that even the riskier projects are tended to. Deeper
exploration of such probabilistic analyses is left for future research. Instead, in the following section
we conduct an experimental study that sheds some light on the average-case effect of these model
modifications.
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4 Experiments

To empirically test the our proposed model modification, we conducted experiments in which we
repeatedly and independently brought a market of n = 50 researchers and m = 100 projects to an
approximate equilibrium and measure the resulting welfare. We then the measured welfare by the
(approximate) optimal welfare and compare the suboptimality ratios obtained by different utility
functions, learning algorithms, and instance structures.

4.1 Project Game instance generation

Project importance For j ∈ [m], we draw the inverse project importance importances inde-
pendently from a Beta(3, 3) distribution. Using the Beta distribution is convenient here because it
allows both wj and 1/wj to have well-behaved densities and moments.

Success probabilities When drawing the project success probability, we consider three different
“researcher types”, as described below.

• Identical researchers We let pi,j = pj for every researcher i and project j. For j ∈ [m],
we draw the project success probability pj from Beta( 1

wj
, 1 − 1

wj
), independently from each

project. This implies that the average success probability is exactly 0.5 (the expectation of
1/wj). Using a Beta distribution with parameter less than 1 for the probabilities implies that
the expected reward wjpj has a wide spread, and therefore that the generated game instances
have few very lucrative projects over which researchers will compete.

• Ability-based researchers We let pi,j = min{2aipj , 0.95}, where pj is drawn as above and
ai is an ability factor drawn from Beta(2, 2) independently for each researcher. This setting
of probabilities keeps the mean success probability close to its previous value of 1/2, and but
creates a more realistic problem instance with non-identical researchers.

• Independent researchers We draw pi,j ∼ Beta( 1
wj
, 1− 1

wj
) independently for every i ∈ [n]

and j ∈ [m].

Risk thresholds When the risk threshold described in Section 3.2 is used, we draw for researcher
i a threshold p

i
defined as the qth percentile of pi,1, pi,2, . . . , pi,m, here q is drawn from Beta(2, 2)

independently for every researcher. If a variance penalty of Section 3.2 is used instead, we let

αi =
√
p−1
i
− 1, with p

i
drawn as before, so that it induces the same effective risk threshold.

4.2 Approximately optimizing the social welfare

Finding the allocation with maximum social welfare is NP-hard in general and also for ability-
based researchers [9]. Instead, we approximate it with a greedy algorithm. The algorithm takes
as input project importances {wj}j∈[m] and success probabilities {pi,j}i∈[n],j∈[m] and sequentially
assigns researchers to projects by repeating the following steps steps n times:

1. For each unassigned researcher i and each project j compute the increase to the social welfare
gained by assigning researcher i to project j, which equals

wjpi,j · (1− P(project solved by researchers already assigned to it)).

2. Find the pair i?, j? of researcher and project for which is the computed increase is maximal.
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3. Assign i? to j?.

As Kleinberg and Oren [9] note, a greedy approach suffices to find the optimal allocation exactly
when players are identical. We state this formally in the following.

Theorem 6. For identical researchers, the greedy algorithm finds the maximum social welfare.

A formal proof of this can be found in Appendix A.3.
For non-identical researchers, we conducted small scale tests with up to 4 researcher and 8

projects, where we found the optimal allocation via brute-force enumeration and compared it to
the greedy solution. In the majority of the tests, the greedy algorithm achieved social welfare
within 10% of the optimum.

4.3 No-regret solvers

To simulate the decisions of real-life researchers, we implemented three types of no-regret dynamics.
The first of these uses Multiplicative Weights (MW) with feedback that equals the exact utility
(expected credit). More precisely, at each round each player observes the utility they’d have
obtained for any possible choice of projects, given the projects chosen by the other agents in this
round. This can be thought of as emulating a mentor’s supervision, which provides more knowledge
of success probabilities than the researcher has by herself.

The second type uses MW algorithm with stochastic feedback formed by simulating the out-
comes of every (hypothetical) project choice and allocating credit accordingly. Such stochastic
feedback is natural, as all the utilities we consider are defined in terms of payout in each possible
outcome. These feedback vectors equal the utility in expectation, and therefore using them with
MW constitutes no-regret dynamics. This scenario is slightly more realistic, as real-life research
outcomes are stochastic, but it still allows researchers to learn from the outcomes of all possible
choice instead of just the choice that was actually made.

In the third and most realistic dynamics, researchers are given stochastic bandit feedback, i.e.
they only observe the (random) amount of credit obtained from their chosen project each round,
given the choices made by the other researchers. To obtain no-regret dynamics, we employ the
Exp3 adversarial bandit algorithm [6].

We describe the MW and Exp3 solvers in additional detail in Appendix B.

Convergence criterion For each algorithm, we conduct the following convergence test once
every 500 steps. Letting T denote the number of steps run so far, we compute for each player i the

regret ri := maxj
2
T

∑T
t=T/2

(
ui(j, x

t
\i)− ui(xt)

)
, where ui is player i’s utility, xt is the allocation

(chosen projects) at step t, and ui(j, x
t
\i) is i’s utility when choosing project j instead of xti. We

declare convergence if
∑

i∈[n] max{ri, 0} ≤ 10−3 · W̃opt, where W̃opt is the approximate optimal
social welfare obtained from the greedy algorithm. We halt the solver whenever convergence is
declared, or after 105 steps.

4.4 Experiment protocol

Each experiment run is defined by the 5-tuple (seed, researcher, credit, penalty, solver). We performed
an experiment for each of the 27 000 tuples in the Cartesian product of the following sets:

• seed ∈ {100, . . . , 349} (250 different seeds).

• researcher ∈ {identical, ability-based, independent}, as defined in Section 4.1.
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• credit ∈ {equal split (1), credit replication as in Section 3.1}.

• penalty ∈ {none, scoop 0.05, scoop 0.1, scoop 0.2, risk threshold, variance}. Here “scoop x”
means the scoop penalty (2) with coefficients as in (9) with c = x and ε = 0.01. The
“risk threshold” and “variance” penalties are described in Section 3.2, and the values of the
thresholds are given in Section 4.1.

• solver ∈ {MW w/ expectations, Stochastic MW, Exp3} as described in Section 4.3.

For a given tuple (seed, researcher, credit, penalty, solver), the experiment proceeds as follows.

1. Set the random seed to seed.

2. Draw a Project Game instance with success probability distribution given by researcher.

3. Compute the approximate optimal social welfare W̃opt using the greedy algorithm described
in Section 4.2.

4. With the utility function defined by credit and penalty, run solver as described in Section 4.3.

5. Let Wemp be the average social welfare in the last 100 learning iterations; output Wemp/W̃opt.

4.5 Results

We summarize the results of our experiments by displaying boxplots of the distribution Wemp/W̃opt

over the 250 values of seed, for each tuple (researcher, credit, penalty, solver); Figure 2 shows results
for “equal split” credit allocation (1), while Figure 3 shows result for the credit replication scheme
we consider in Section 3.1.

The scoop penalty improves the quality of equilibira across the board. For equal credit, we see
improvements of roughly 10%, and for credit replications the improvements are even more dramatic.
The coefficient c = 0.2 gives the best results for credit replication and equal split with identical
researcher, while c = 0.1 performs slightly better for equal split and ability-base or independent
researchers.

Figure 3 shows that, as expected, the credit replication scheme can lead to extremely poor
equilibria in general and this effect lessens as researchers’ abilities become more disparate. It
will be interesting to explore (theoretically and experimentally) whether scoop penalties with even
greater constants c can improve the situation even further.

A somewhat surprising result observable in both Figure 3 and 2 is the very high similarity of
equilibria achieved by all three solvers. The only noticeable effect is the slightly higher PoA achieved
in some cases by Exp3 which results from imperfect convergence of the algorithm; approximately
50% of the Exp3 trials converged before the 100000 iteration cutoff, as opposed to over 99% of
the trials involving the other solvers. However, the welfare in the non-convergent trials was not
significantly worse that that of the convergent ones. This result underscores the robustness of the
scoop penalty to different learning dynamics.

It is also worth noting that while never as good as a well-calibrated scoop penalty, the risk
threshold and variance penalty also reduce PoA when credit replication is used. With the equal-split
scheme, there is an interesting inversion in which the variance penalty becomes more effective. In
a few cases—namely with ability-based success probabilities—the threshold and variance penalties
increase PoA. This is perhaps due to misalignment between researcher’s self-perceived risk and
their optimal role in the research market, leading to some researchers choosing sub-optimal research
projects. It should also be noted that no attempt was made to tune or otherwise judiciously choose
the distribution of the risk/variance penalty parameters.
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Figure 2: A comparison of PoA for different penalties with equal split credit allocation. Rows vary
by success probability distribution type and columns by solver algorithm. Here “basic” denotes the
case with no penalty and “weighted” denotes the variance penalty.
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Figure 3: A comparison of PoA for different penalties given credit replication. Rows vary by
success probability distribution type and columns by solver algorithm. Here “basic” denotes the
case with no penalty and “weighted” denotes the variance penalty.
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Appendices

A Proofs

A.1 Proof of Theorem 1

Theorem 1. Let x, y be two strategies for the Project Game with Identical Players. If x is a Nash
equilibrium for utility (3), then

W (x) ≥ W (y)

1 + γ (x, y)
,

where

γ (x, y) := max
j∈[m]

{
max

{
W [Yj ]

W [Xj ]
− Yj
Xj
− ρj (Xj − Yj)

W [Xj − 1]

W [Xj ]
, ρj (Yj −Xj)

}}
. (4)

Proof. Our first step is to permute the strategy y so that it is maximally aligned, i.e. for every
project j , either {i | xi = j} ⊆ {i | yi = j} or {i | yi = j} ⊆ {i | xi = j}; since players are identical,
such permutation does not change W (y). The permutation allows us to write the “entangled
utility” in a simple form∑

i∈[n]

ũi
(
yi, x\i

)
=
∑
j∈[m]

(
min {Xj , Yj} Ũj [Xj ] + [Yj −Xj ]+ Ũj [Xj + 1]

)
,

where [z]+ = max {z, 0} and Ũj [k] = Wj [k] /k − ρjWj [k − 1] is the per-player penalized utility
from project j, when k players choose it. The above equality holds because there are exactly
min {Xj , Yj} players that choose project j in both y and x, and [Yj −Xj ]+ players that choose
project j in y but not in X. Consider a project j for which Yj > Xj , the submodularity of Wj [·]
gives

(Yj −Xj)
Wj [Xj + 1]

Xj+1
≥ (Yj −Xj) (Wj [Xj + 1]−Wj [Xj ]) ≥Wj [Yj ]−Wj [Xj ] .

Letting
S> = {j ∈ [m] | Yj > Xj} and S≤ = {j ∈ [m] | Yj ≤ Xj} ,

we have∑
j∈S>

(
min {Xj , Yj} Ũj [Xj ] + [Yj −Xj ]+ Ũj [Xj + 1]

)
=
∑
j∈S>

(
XjŨj [Xj ] + (Yj −Xj) Ũj [Xj + 1]

)
≥
∑
j∈S>

(
XjŨj [Xj ] +Wj [Yj ]−Wj [Xj ]− ρj (Yj −Xj)Wj [Xj ]

)
=
∑
j∈S>

(Wj [Yj ]− ρj (Yj −Xj)Wj [Xj ]− ρjXjWj [Xj − 1]) ,

and ∑
j∈S≤

(
min {Xj , Yj} Ũj [Xj ] + [Yj −Xj ]+ Ũj [Xj + 1]

)
=
∑
j∈S≤

YjŨj [Xj ]

=
∑
j∈S>

(
Yj
Xj

Wj [Xj ]− ρjYjWj [Xj − 1]

)
.
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Combining the two expressions and rearranging, we have∑
i∈[n]

ũi
(
yi, x\i

)
≥W (y)−

∑
j∈S≤

(
W [Yj ]

W [Xj ]
− Yj
Xj
− ρj (Xj − Yj)

W [Xj − 1]

W [Xj ]

)
Wj [Xj ]

−
∑
j∈S>

ρj (Yj −Xj)Wj [Xj ]−
∑
j∈[m]

ρjXjWj [Xj − 1]

≥W (y)− γ (x, y)W (x)−
∑
j∈[m]

ρjXjWj [Xj − 1] ,

with γ (x, y) defined in (4). To complete the proof we simply use the fact that x is a NE to write∑
i∈[n]

ũi
(
yi, x\i

)
≤
∑
i∈[n]

ũi (x) = W (x)−
∑
j∈[m]

ρjXjWj [Xj − 1] .

Combining our upper and lower bounds on
∑

i∈[n] ũi
(
yi, x\i

)
and rearranging gives the result.

A.2 Proof of Corollary 5

Corollary 5. In the Project Game with penalized utility (2) and valid base utility ui, if

ρi,j = c · log
1

max{ε, 1− pi,j}
(9)

for some c, ε ∈ (0, 1), then the robust price of anarchy is at most

2 + c · log 1
ε

1−√ε .

For c = 0.05 and ε = 0.01 (as in Figure 1), the robust price of anarchy is at most 2.4781 ≤ 2.5.

Proof. As in the proof of Corollary 3, we start with an optimal policy y? and modify it by trimming
“excess researchers”. Fixing some ε′ ∈ (0, 1), we formally define our modified policy y through its
inverse Y as

Yj = argmin
S⊆Y ?j s.t. Wj(S)≥(1−ε′)Wj(Y ?j )

|S| .

This defines a valid assignment y as by construction Yj ⊆ Y ?
j for every j ∈ [m]. We further have

that by construction W (y) ≥ (1− ε′).
We now proceed to bound β(y) = maxj∈[m]

∑
i∈Yj ρi,j . To do so, we fix j ∈ [m] and consider

separately the cases |Yj | = 1 and |Yj | > 1. First, if |Yj | = 1, so that Yj = {i′} for some i′ ∈ [n], we
simply have ∑

i∈Yj

ρi,j = ρi′,j ≤ c log
1

ε
(11)

by the definition (9) of ρi,j . Second, if |Yj | > 1, we have by construction of Yj that for every S ⊂ Yj ,
Wj(S) < (1 − ε′)Wj(Y

?
j ) ≤ (1 − ε′)wj . Now, using Wj(S) = wj

(
1− e−

∑
i∈S log 1

1−pi,j

)
, we have

that Wj(S) < (1− ε′)wj implies ∑
i∈S

log
1

1− pi,j
≤ log

1

ε′
.
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Summing this inequality over every S = Yj \ {i}, i ∈ Yj , gives

(|Yj | − 1)
∑
i∈Yj

log
1

1− pi,j
=
∑
i∈Yj

∑
i′∈Yj\{i}

log
1

1− pi,j
≤ |Yj | log

1

ε′
.

Using again the definition (9) of ρi,j , we have

∑
i∈Yj

ρi,j ≤ c
∑
i∈Yj

log
1

1− pi,j
≤ |Yj |
|Yj | − 1

c log
1

ε′
≤ 2c · log

1

ε′
. (12)

Therefore, with ε′ =
√
ε, the bounds (11) and (12) together guarantee that β(y) ≤ c log 1

ε , and
therefore

(2 + β(y))
W (y?)

W (y)
≤ 2 + c · log 1

ε

1−√ε ,

and so the Corollary follows from Theorem 4.

A.3 Proof of Theorem 6

Theorem 6. For identical researchers, the greedy algorithm finds the maximum social welfare.

Proof. We will prove by induction that we never eliminate an optimal allocation.
For the base case, we know that there exists at least one optimal allocation that maximizes

social welfare. This cannot have been eliminated before we start assigning researchers.
Assume that the algorithm worked until the kth step. Say we assign researcher i to project

j. Case 1: if we look at some optimal, we immediately see that there are more people assigned
to j than we have so far. Then we can assign i to j immediately, swapping i with some extra
researcher assigned to j in the optimal. We know this is still optimal, since relabeling doesn’t affect
the distribution when the researchers are identical.

Case 2: there are no extra researchers assigned to project j. Assume the contribution of this
assignment was c. All other options were at most as good as the assignment we made, so their
contribution is ≤ c. Since, once we assign a researcher to a project the reward for assigning more
researchers to that project can only decrease, we know that all assignments made after this point,
contributed at most c, regardless of the order they were assigned in. In particular, the contribution
for assigning i to wherever it is in the optimal must be at most c. Regardless of what time step i
was assigned at, assigning i to j will give contribution c (since no extra researchers were assigned
to j in the meantime), and assigning i anywhere else would give contribution at most c. Then,
changing i to be assigned to j can only increase the social optimum.

Thus, at each step in the algorithm, we never eliminate all social optimal allocations. Thus, at
the end of the algorithm, the allocation generated must be optimal.

B Solvers in detail

B.1 Multiplicative weights

The Multiplicative Weights algorithm [4] is described by the following procedure for each researcher:

1. Initialize w1(r) = 1 for all research projects r ∈ R

2. For t = 1, 2, ..., T :
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(a) Choose a project according to the distribution pt := wt/Γt where Γt =
∑

r∈R w
t(r)

(b) Given cost vector ct, decrease weights using the formula wt+1(r) = wt(r) · (1− ε)ct(r) for
every project r ∈ R.

In the non-stochastic case the cost vectors ct will be calculated as the negative expected utility
of each action. In the stochastic case, the cost vectors are sampled negative utilities given each
action. We should expect slightly faster convergence in the non-stochastic case as it most accurately
reflects the utility of an action.

B.2 Exp3

In the least observed setting, we consider the research market for each individual researcher as an
adversarial bandit, which is an extension of the multi-armed bandit model to competitive games.
Exp3 is a well-known algorithm for adversarial bandit learning with bounded regret [6]. The
procedure for Exp3 is shown below:

1. Initialize w1(r) = 1 for all research projects r ∈ R, |R| = m

2. For t = 1, 2, ..., T :

(a) Set pt := (1− γ) wi(t)∑m
j=1 wj(t)

+ γ
m for each i.

(b) Choose a project rt according to pt

(c) Given reward xt(rt), update weights using the formula wt+1(rt) = wt(rt)e
γxt(rt)

mpt(rt) .

(d) For all j 6= rt, w
t+1(j) = wt(j).

As in the stochastic case with the Multiplicative Weights solver, the reward for an action is
simulated given the chosen action.
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