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Abstract—Small unmanned aircraft are typically equipped
with multiple sensors for flight through unknown environments.
Due to onboard energy constraints, they must balance sensing
and movement. We frame this problem as a Partially Observable
Markov Decision Process (POMDP) and show that online stochas-
tic planning performs well compared to a deterministic myopic
baseline. In contrast to most online POMDP solvers, which
sample states, we motivate planning with a belief space MDP
to simulate and heuristically encourage sensing appropriately,
and show that this outperforms the particle-sampling POMCP
solver. Our initial experiments with partially observed gridworlds
support our hypotheses and raise interesting questions about
contending with huge observation spaces, rollouts in belief space
and reward sparsity in online planning.

I. INTRODUCTION

We consider the problem of navigation in an unknown
stochastic environment by an agent with multiple sensors and
limited energy. This problem is relevant for small unmanned
aircraft, where the onboard battery life is a crucial factor. A
judicious strategy for sensor usage and movement is critical
to the success of the mission. The stochasticity and partial
observability of the environment make the problem challenging,
as does the need to reason about both sensing and movement.

There are many related works that we only briefly comment
on here. The dynamic sensor selection problem has been
addressed through various theoretically justified methods -
maximum flow graphs [1], minimizing error covariance [2],
Rényi divergence [3], and convex optimization [4]. However,
these methods are open-loop and myopic, i.e. they do not reason
about the future effect of sensing on the environment. More
recently, closed-loop policy frameworks for sensor selection
have been developed by Spaan and Lima [5] and Satsangi et al.
[6], but while their formulation is similar to ours, they consider
offline solution methods which have trouble scaling to large
state and observation spaces.

Our key idea is to formulate an adaptive approach using
online POMDP planning [7], described in Section II, that
reasons jointly about multimodal sensing and navigation actions,
their outcomes on the environment, and their costs. We examine
important issues like choosing between different sensors, the
structure of the belief space, and overcoming reward sparsity
in rollouts, as described in Section III.

We discuss our observations in Section IV. First, we design
a simple but interpretable problem with complementary sensing
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Fig. 1: Our POMDP formulation induces intuitive sensing and
movement with an online solver. Three trajectories are shown
on an example with different penalty parameters for entering a
no-fly (black) cell. The left panels represent the belief of the
solver about the environment and the right panels show the
true environment and the agent movements. (a) Large penalty
causes conservative behaviour with little exploration. (b) Small
penalty causes a brash lack of sensing. (c) Reasonable penalty
yields both exploration and progress.

modalities and show that online planning can do well in varying
settings, compared to a greedy baseline. Additionally, we obtain
better performance by solving a belief space MDP online
rather than particle sampling. Though the belief-MDP approach
requires a simplifying assumption about the observation space
for tractability, it benefits from simulating the effects of sensing
actions on the belief space. Finally, we show significant
improvement in performance due to incorporating rollout
heuristics for sensing and movement towards the goal. We
conclude with some comments in Section V. Figure 1 shows
an overview of our setup and an exemplary observation.

II. PROBLEM FORMULATION

Our problem environment is a binary gridworld, where cells
are either fly zones or no-fly zones. The agent starts from



the top left and can move in the 4 principal directions. The
state of a cell (fly/no-fly) is known for certain only after the
agent occupies it. The agent has multiple sensors, with varying
properties, for observing surrounding cells. The objective is to
reach the lower right corner with minimum overall cost, where
penalties are due to movement distance, sensing energy, and
no-fly zones entered, if any.

A. POMDP Model

Here we describe the POMDP [8] components for our setting:
‚ State space S ” tG,E,xu. Gnˆn is the grid, i.e. Grxs “
1rx P NFZs, E is the current energy consumed and x
is the current location.

‚ Belief space B. The belief is over the states of the grid
cells. We assume cell states are independent of each
other, i.e. bpGrxsq ” P px P NFZq. Further comments
on this are in Section III-B. We assume that the energy
consumption and the current location are fully observed.

‚ Observation space Z. Each observation Ĝnˆn is a grid
of tuples of the sensor observation and its confidence at
each cell, Ĝrxs “ p1rx P NFZs,Confpxqq.

‚ Action space A “ tN,S,E,W, Sensor1 . . . Sensormu for
moving or taking a sensor reading.

‚ Transition function T . For simplicity we assume determin-
istic dynamics. For a P tN,S,E,W u the new location
x1 is the appropriate new cell and for a “ Sensori the
energy is updated by ∆Ei.

‚ Observation function O pertains only to sensing actions,
Opx1 | x, a “ Sensoriq “ fipx,x

1q where fi is the ith
sensing function; fipx,x1q “ P pGrxs “ Grx1sq depends
on the sensor model and the distance between x and x1.

‚ Reward function R has ´λmove if a P tN,S,E,W u and
∆Ei if a “ Sensori. Additionally, a penalty of λNFZ is
incurred if the agent enters an NFZ cell, and a reward of
λsucc is obtained when the agent reaches the goal. The
λ’s are tunable parameters but obey

λsucc ą λNFZ ą λmove

The start location is xs “ p0, 0q and the goal is xg “ pn, nq
for all grids. Our problem is undiscounted.

B. Sensors

We define three simple sensor models for our experiments,
each based on a realistic robotic sensor. They have somewhat
complementary characteristics in terms of fidelity, spread and
energy consumption.
‚ Time-of-Flight (TOF). - This sensor observes cells along

a line of width 1 in a certain direction. It has moderate
fidelity and consumes minimum energy. This sensor has
4 associated actions, one for sensing in each direction.

‚ Spinning LIDAR. This sensor observes cells all around
the agent, up to a certain radius. It has fidelity similar to
the ToF and consumes more energy than it.

‚ HD Camera. This sensor observes a block of cells of
width 3 in a certain direction. It has the highest fidelity

and consumes the most energy. It also has 4 actions for
the 4 directions.

In each case, the confidence of the observation falls with
the Manhattan distance of the observed cell from the agent’s
location, using exponential decay. The parameter details are
omitted for space.

III. APPROACH

We considered online solution methods due to the very high
dimensional state and observation spaces. In this section we
describe two related online planning algorithms that we used,
and a greedy baseline approach based on established ideas.

A. POMCP

The POMCP algorithm [9] determines the best action to
take from the current belief state, using Monte-Carlo Tree
Search (MCTS) to evaluate the utility of actions using forward-
simulations, and particle filters to track belief propagation.
To use POMCP, we require generative models for states and
observations, according to our earlier rules.

We also define a function b1 Ð UpdateBeliefpb, a, oq that
the outer loop of POMCP invokes to update the belief state
after an action is taken and a true observation received from
the world. After some sensing action, we update the belief of
the cells for which the sensor’s confidence is ą 0.5. For each
such cell pi, jq, we do a Bayesian belief update:

P
´

G1ri, js “ 1 | Ĝpi, jq, bpGri, jsq
¯

“
$

&

%

Ĝri,jsr2sbpGri,jsq

Ĝri,jsr2sbpGri,jsq`p1´Ĝpi,jqr2sqp1´bpGri,jsqq
if Ĝri, jsr1s “ 1

p1´Ĝri,jsr2sqpbpGri,jsqq

p1´Ĝri,jsr2sqpbpGri,jsqq`Ĝpi,jqr2sp1´bpGri,jsqq
if Ĝri, jsr1s “ 0

where Ĝri, jsr1s is the binary observation at pi, jq and
Ĝri, jsr2s is the confidence at pi, jq as per the sensor model.

There are two important limitations. First, positive rewards
are very sparse, occurring only at the goal state. With a large
action space, rollouts are unlikely to reach the goal for most grid
cells. We handle sparsity somewhat by incorporating a heuristic
in the rollout reward that encourages movement towards the
goal (described in Section IV-B). Second, POMCP uses an
unweighted particle filter representation for the rollouts, where
each particle state maintains a possible world map sampled
from the current belief state. The effects of sensing actions on
the belief map are not explicitly captured by the rollouts as
the sampled particles do not carry around the belief state. This
observation motivated our second approach.

B. Belief Space MDP with MCTS

Any POMDP has an equivalent MDP in belief space. State-
of-the-art online solvers like POMCP typically do not solve
the Belief-MDP directly as the belief space is exponential
in the size of the state space. Instead, they sample states or
scenarios. This particle sampling does not allow changes in
belief state to be incorporated into the rollout. Working directly
with the Belief-MDP, however, avoids this drawback, and lets
us simulate the effect of sensing on the belief during rollouts.



Reasoning about belief space has been presented in related
contexts. The typical state-based reward function is unsuitable
when the agent has an explicit incentive to reduce uncertainty.
Araya et al. [10] introduced the idea of belief-based rewards
for POMDPs, and showed how to incorporate them in existing
offline solvers. More specifically, Spaan and Lima [5] intro-
duced the POMDP with Information Rewards framework for
active perception, Satsangi et al. [6] considered dynamic sensor
selection, and Dressel and Kochenderfer [11] extended a state-
of-the art offline solver to take information seeking actions
for localization. Unlike these works, however, we consider an
online planning framework which is more scalable to large
spaces and supports more general reward functions.

Due to our independence assumption for grid cell states,
the observation space is linear in the grid size, making the
Belief-MDP tractable with online planning. This assumption
is restrictive, but we wanted to examine if the benefit of
doing rollouts in belief space outweighs the simplifying
effect of the assumption. The Belief-MDP differs from the
POMDP only in the transition and reward functions; the
transformation is standard and we omit it here for space. We
do discuss an additional heuristic we used for the Belief-MDP
in Section IV-B. We use the online MCTS solver for this
Belief-MDP.

C. Greedy Baseline

Our baseline approach has two standard components -
greedily sensing based on expected information gain [12] and
moving via receding horizon path planning [13]. This method
does not depend on rollouts and is less affected by reward
sparsity, thereby offering a decent benchmark and comparison,
although it is deterministic and myopic. There are two steps:

1) IG-based Sensing:
‚ Evaluate the change in confidence for a “ Sensori

∆confpG,x, aq “
ÿ

x1PG

ÿ

o

|P po | x, aqpb1px1q ´ bpxq|

‚ Execute the sensing action with largest ∆conf .
‚ Repeat until max

a
∆confpG,x, aq ă ε, where ε is a

parameter for minimally useful information gain.
2) Movement along unobstructed path:
‚ Locate the waypoint w closest to the goal coordinates (by

Manhattan distance) such that bpGrwsq ă 0.5.
‚ Plan the minimally obstructed path from current location
x to w and take the first movement along this path.

The behaviour of this algorithm is thus to sense until fairly con-
fident of its surroundings and then move along the apparently
unobstructed path towards the goal.

IV. RESULTS AND DISCUSSIONS

We ran various experiments in our gridworld setup with the
three methods described. In the interest of space, we discuss
only representative results that give us insights about the overall
framework. Some implementation comments are in order. First,
though our problem is an infinite-horizon one, and terminates
when the goal state is reached, for our tests we terminated
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Fig. 2: The mean (bar) and standard error (line) of the rewards
for the three approaches over 9 different problem settings. The
Belief-MDP with MCTS does the best, but it is more affected
by increasing problem size than POMCP is. The performance
of the greedy baseline has very high deviation.

a trial if it took more than 1000 iterations. The accumulated
reward for that case is the cost incurred till that point. Second,
there are several parameters, for the problem as well as the
solvers, that could affect the performance. We simply chose a
realistic set of problem parameters and a consistent set of solver
parameters that they do well with. The specific values of the
rewards accrued are immaterial; only the relative performance
matters.

A. General Performance

Our first set of results compares the three approaches
described above over a range of problem characteristics, defined
by grid side length and the fraction of no-fly cells. For each
setting, we averaged over 5 different gridworlds and for the
stochastic solvers (other than greedy), over 10 trials for each
gridworld. The statistics are shown in Figure 2. POMCP used
a movement heuristic in the rollout reward as mentioned in
Section III-A, while MCTS for Belief-MDP used movement
and sensing heuristics (explored more in Section IV-B).

The results suggest that there is a benefit to rollouts in
a belief space MDP when sensing is an action, even if it
requires a simplifying independence assumption for tractability.
However, as the grid becomes larger, so do the state and
(true) observation spaces, and this assumption becomes more
of a problem. Consequently, the performance of Belief-MDP
degrades much more than that of POMCP, and the relative gap
in their performance reduces significantly.

B. Effect of Rollout Heuristics

We examined the effect of incorporating heuristics for MCTS
to help overcome the extreme sparsity of rewards in this
problem which we motivated earlier. The idea of directing
the search according to heuristic knowledge was introduced
as ‘progressive bias’ by Chaslot et al. [14], and it modifies
the selection strategy, but they flag an issue of scalability to
large state spaces. In contrast, we applied time-inexpensive
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Fig. 3: A comparison of different heuristics used in search with the Belief-MDP solver. (a) Having no heuristic leads to some
progress towards goal and little exploration of the terrain. (b) Sensing heuristic alone leads to heavy exploration but low progress
towards the goal. (c) Movement heuristic alone leads to the avoidance of crowded obstacles. (d) Using both heuristics yields
trajectories that do not shy away from obstacle-dense areas.
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Fig. 4: A quantitative comparison of different heuristics used in
search over the Belief-MDP over an intermediate (25,0.2) grid.
The performance increases significantly with both heuristics.
Note that the performance with only one heuristic is worse
than that for neither, which indicates that a heuristic for only
one kind of action may be detrimental. The specific numerical
values are omitted as the relative behaviour is what matters.

modifications to the rollout reward function, which led to a
considerable improvement in performance.

First, we added the negative Manhattan distance between
the location in the rollout state and the goal coordinates
(this was done in POMCP too). Second, we subtracted
p∆confidencepG, xq ´ kq when taking sensor action x. The
k parameter was calibrated to ensure only worthwhile and
not just positive changes in confidence were incentivized. The
qualitative impact of these heuristics is shown in Figure 3 and
a quantitative comparison over a specific intermediate setting
is shown in Figure 4.

These results suggest that simple heuristics can impact online
solvers in large problems with reward sparsity, provided they
do not encourage only one type of action. The sparsity is
particularly an issue in the online setting, where the idea of
eligibility traces, introduced to overcome sparsity in offline
problems, cannot directly be applied.

V. CONCLUSION

We investigated the effectiveness of an online stochastic
planning framework for the multimodal sensing and navigation
problem, which we modeled as a POMDP. In particular we

considered if rollouts in belief space are useful for sensing
actions. Our results are quite promising and bring up directions
for future work, such as a more formal analysis of rollout
heuristics, using reinforcement learning for good parameters,
and tractable extensions to real-world problem settings.
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